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Preface

The objective of this text is to serve as a cornerstone for the learning of logic design, 

digital system design, and computer design by a broad audience of readers. This fifth 

edition marks the continued evolution of the text contents. Beginning as an adap-

tation of a previous book by the first author in 1997, it continues to offer a unique 

combination of logic design and computer design principles with a strong hardware 

emphasis. Over the years, the text has followed industry trends by adding new mater-

ial such as hardware description languages, removing or de-emphasizing material of 

declining importance, and revising material to track changes in computer technology 

and computer-aided design.

NEW TO THIS EDITION 
The fifth edition reflects changes in technology and design practice that require com-

puter system designers to work at higher levels of abstraction and manage larger 

ranges of complexity than they have in the past. The level of abstraction at which 

logic, digital systems, and computers are designed has moved well beyond the level 

at which these topics are typically taught. The goal in updating the text is to more 

effectively bridge the gap between existing pedagogy and practice in the design of 

computer systems, particularly at the logic level. At the same time, the new edition 

maintains an organization that should permit instructors to tailor the degree of tech-

nology coverage to suit both electrical and computer engineering and computer sci-

ence audiences. The primary changes to this edition include:

Chapter 1 has been updated to include a discussion of the layers of abstractions 

in computing systems and their role in digital design, as well as an overview of 

the digital design process. Chapter 1 also has new material on alphanumeric 

codes for internationalization.

The textbook introduces hardware description languages (HDLs) earlier, start-

ing in Chapter 2. HDL descriptions of circuits are presented alongside logic sche-

matics and state diagrams throughout the chapters on combinational and 

sequential logic design to indicate the growing importance of HDLs in contem-

porary digital system design practice. The material on propagation delay, which is 

a first-order design constraint in digital systems, has been moved into Chapter 2.

Chapter 3 combines the functional block material from the old Chapter 3 and 

the arithmetic blocks from the old Chapter 4 to present a set of commonly 
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occurring combinational logic functional blocks. HDL models of the func-

tional blocks are presented throughout the chapter. Chapter 3 introduces the 

concept of hierarchical design.

Sequential circuits appear in Chapter 4, which includes both the description of 

design processes from the old Chapter 5, and the material on sequential circuit 

timing, synchronization of inputs, and metastability from the old Chapter 6. 

The description of JK and T flip-flops has been removed from the textbook 

and moved to the online Companion Website.

Chapter 5 describes topics related to the implementation of digital hardware, 

including design of complementary metal-oxide (CMOS) gates and program-

mable logic. In addition to much of the material from the old Chapter 6, 

Chapter 5 now includes a brief discussion of the effect of testing and verifica-

tion on the cost of a design. Since many courses employing this text have lab 

exercises based upon field programmable gate arrays (FPGAs), the descrip-

tion of FPGAs has been expanded, using a simple, generic FPGA architecture 

to explain the basic programmable elements that appear in many commer-

cially available FPGA families.

The remaining chapters, which cover computer design, have been updated to 

reflect changes in the state-of-the art since the previous edition appeared. 

Notable changes include moving the material on high-impedance buffers from 

the old Chapter 2 to the bus transfer section of Chapter 6 and adding a discus-

sion of how procedure call and return instructions can be used to implement 

function calls in high level languages in Chapter 9.

Offering integrated coverage of both digital and computer design, this edition 

of Logic and Computer Design Fundamentals features a strong emphasis on fun-

damentals underlying contemporary design. Understanding of the material is sup-

ported by clear explanations and a progressive development of examples ranging 

from simple combinational applications to a CISC architecture built upon a RISC 

core. A thorough coverage of traditional topics is combined with attention to com-

puter-aided design, problem formulation, solution verification, and the building of 

problem-solving skills. Flexibility is provided for selective coverage of logic design, 

digital system design, and computer design topics, and for coverage of hardware 

description languages (none, VHDL, or Verilog®).

With these revisions, Chapters 1 through 4 of the book treat logic design, 

Chapters 5 through 7 deal with digital systems design, and Chapters 8 through 12 

focus on computer design. This arrangement provides solid digital system design 

fundamentals while accomplishing a gradual, bottom-up development of funda-

mentals for use in top-down computer design in later chapters. Summaries of the 

topics covered in each chapter follow.

Logic Design 

Chapter 1, Digital Systems and Information, introduces digital computers, com-

puter systems abstraction layers, embedded systems, and information representation 

including number systems, arithmetic, and codes.
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Chapter 2, Combinational Logic Circuits, deals with gate circuits and their 

types and basic ideas for their design and cost optimization. Concepts include 

Boolean algebra, algebraic and Karnaugh-map optimization, propagation delay, and 

gate-level hardware description language models using structural and dataflow mod-

els in both VHDL and Verilog.

Chapter 3, Combinational Logic Design, begins with an overview of a con-

temporary logic design process. The details of steps of the design process including 

problem formulation, logic optimization, technology mapping to NAND and NOR 

gates, and verification are covered for combinational logic design examples. In addi-

tion, the chapter covers the functions and building blocks of combinational design 

including enabling and input-fixing, decoding, encoding, code conversion, selecting, 

distributing, addition, subtraction, incrementing, decrementing, filling, extension and 

shifting, and their implementations. The chapter includes VHDL and Verilog models 

for many of the logic blocks.

Chapter 4, Sequential Circuits, covers sequential circuit analysis and design. 

Latches and edge-triggered flip-flops are covered with emphasis on the D type. 

Emphasis is placed on state machine diagram and state table formulation. A com-

plete design process for sequential circuits including specification, formulation, state 

assignment, flip-flop input and output equation determination, optimization, technol-

ogy mapping, and verification is developed. A graphical state machine diagram model 

that represents sequential circuits too complex to model with a conventional state 

diagram is presented and illustrated by two real world examples. The chapter includes 

VHDL and Verilog descriptions of a flip-flop and a sequential circuit, introducing 

procedural behavioral VHDL and Verilog language constructs as well as test benches 

for verification. The chapter concludes by presenting delay and timing for sequential 

circuits, as well as synchronization of asynchronous inputs and metastability.

Digital Systems Design 

Chapter 5, Digital Hardware Implementation, presents topics focusing on various 

aspects of underlying technology including the MOS transistor and CMOS circuits, 

and programmable logic technologies. Programmable logic covers read-only memo-

ries, programmable logic arrays, programmable array logic, and field programmable 

gate arrays (FPGAs). The chapter includes examples using a simple FPGA architec-

ture to illustrate many of the programmable elements that appear in more complex, 

commercially available FPGA hardware.

Chapter 6, Registers and Register Transfers, covers registers and their applica-

tions. Shift register and counter design are based on the combination of flip-flops 

with functions and implementations introduced in Chapters 3 and 4. Only the ripple 

counter is introduced as a totally new concept. Register transfers are considered 

for both parallel and serial designs and time–space trade-offs are discussed. A sec-

tion focuses on register cell design for multifunction registers that perform multiple 

operations. A process for the integrated design of datapaths and control units using 

register transfer statements and state machine diagrams is introduced and illustrated 

by two real world examples. Verilog and VHDL descriptions of selected register 

types are introduced.



Chapter 7, Memory Basics, introduces static random access memory (SRAM) 

and dynamic random access memory (DRAM), and basic memory systems. It also 

describes briefly various distinct types of DRAMs.

Computer design 

Chapter 8, Computer Design Basics, covers register files, function units, datapaths, 

and two simple computers: a single-cycle computer and a multiple-cycle computer. 

The focus is on datapath and control unit design formulation concepts applied to 

implementing specified instructions and instruction sets in single-cycle and multiple-

cycle designs.

Chapter 9, Instruction Set Architecture, introduces many facets of instruc-

tion set architecture. It deals with address count, addressing modes, architectures, 

and the types of instructions and presents floating-point number representation 

and operations. Program control architecture is presented including procedure 

calls and interrupts.

Chapter 10, RISC and CISC Processors, covers high-performance processor 

concepts including a pipelined RISC processor and a CISC processor. The CISC 

processor, by using microcoded hardware added to a modification of the RISC 

processor, permits execution of the CISC instruction set using the RISC pipeline, 

an approach used in contemporary CISC processors. Also, sections describe high-

performance CPU concepts and architecture innovations including two examples 

of multiple CPU microprocessors.

Chapter 11, Input–Output and Communication, deals with data transfer 

between the CPU and memory, input–output interfaces and peripheral devices. Dis-

cussions of a keyboard, a Liquid Crystal Display (LCD) screen, and a hard drive as 

peripherals are included, and a keyboard interface is illustrated. Other topics range 

from serial communication, including the Universal Serial Bus (USB), to interrupt 

system implementation.

Chapter 12, Memory Systems, focuses on memory hierarchies. The concept of 

locality of reference is introduced and illustrated by consideration of the cache/main 

memory and main memory/hard drive relationships. An overview of cache design 

parameters is provided. The treatment of memory management focuses on paging 

and a translation lookaside buffer supporting virtual memory.

In addition to the text itself, a Companion Website and an Instructor’s Manual 

are provided. Companion Website (www.pearsonglobaleditions.com/Mano) content 

includes the following: 1) reading supplements including material deleted from prior 

editions, 2) VHDL and Verilog source files for all examples, 3) links to computer-

aided design tools for FPGA design and HDL simulation, 4) solutions for about 

one-third of all text chapter problems, 5) errata, 6) PowerPoint® slides for Chapters 1  

through 8, 7) projection originals for complex figures and tables from the text, and 

8) site news sections for students and instructors pointing out new material, updates, 

and corrections. Instructors are encouraged to periodically check the instructor’s site 

news so that they are aware of site changes. Instructor’s Manual content includes 

suggestions for use of the book and all problem solutions. Online access to this man-

ual is available from Pearson to instructors at academic institutions who adopt the 
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book for classroom use. The suggestions for use provide important detailed informa-

tion for navigating the text to fit with various course syllabi.

Because of its broad coverage of both logic and computer design, this book 

serves several different objectives in sophomore through junior level courses. Chapters 

1 through 9 with selected sections omitted, provide an overview of hardware for com-

puter science, computer engineering, electrical engineering, or engineering students in 

general in a single semester course. Chapters 1 through 4 possibly with selected parts 

of 5 through 7 give a basic introduction to logic design, which can be completed in a 

single quarter for electrical and computer engineering students. Covering Chapters 

1 through 7 in a semester provides a stronger, more contemporary logic design treat-

ment. The entire book, covered in two quarters, provides the basics of logic and com-

puter design for computer engineering and science students. Coverage of the entire 

book with appropriate supplementary material or a laboratory component can fill a 

two-semester sequence in logic design and computer architecture. Due to its moder-

ately paced treatment of a wide range of topics, the book is ideal for self-study by engi-

neers and computer scientists. Finally, all of these various objectives can also benefit 

from use of reading supplements provided on the Companion Website.

The authors would like to acknowledge the instructors whose input contributed 

to the previous edition of the text and whose influence is still apparent in the current 

edition, particularly Professor Bharat Bhuva, Vanderbilt University; Professor Donald 

Hung, San Jose State University; and Professors Katherine Compton, Mikko Lipasti, 

Kewal Saluja, and Leon Shohet, and Faculty Associate Michael Morrow, ECE, Uni-

versity of Wisconsin, Madison. We appreciate corrections to the previous editions pro-

vided by both instructors and students, most notably, those from Professor Douglas 

De Boer of Dordt College. In getting ready to prepare to think about getting started 

to commence planning to begin working on the fifth edition, I received valuable feed-

back on the fourth edition from Patrick Schaumont and Cameron Patterson at Virginia 

Tech, and Mark Smith at the Royal Institute of Technology (KTH) in Stockholm, Swe-

den. I also benefited from many discussions with Kristie Cooper and Jason Thweatt 

at Virginia Tech about using the fourth edition in the updated version of our depart-

ment’s Introduction to Computer Engineering course. I would also like to express 

my appreciation to the folks at Pearson for their hard work on this new edition. In 

particular, I would like to thank Andrew Gilfillan for choosing me to be the new third 
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C H A P T E R

Digital Systems  
and Information

1

This book deals with logic circuits and digital computers. Early computers were used 

for computations with discrete numeric elements called digits (the Latin word for 

digital computer. The use of “digital” spread from the 

computer to logic circuits and other systems that use discrete elements of information, 

giving us the terms digital circuits and digital systems. The term logic is applied to circuits 

computers are based on logic circuits, they operate on patterns of elements from these 

two-valued sets, which are used to represent, among other things, the decimal digits. 

Today, the term “digital circuits” is viewed as synonymous with the term “logic circuits.”

The general-purpose digital computer is a digital system that can follow a stored 

sequence of instructions, called a program, that operates on data. The user can specify 

processing tasks, ranging over a very wide spectrum of applications. This makes the 

learning the concepts, methods, and tools of digital system design. To this end, we use 

generic computer and see how they relate to a block diagram commonly used to 

programming computers constructed using billions of transistors. Otherwise, the 

remainder of the chapter focuses on the digital systems in our daily lives and introduces 

approaches for representing information in digital circuits and systems.
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1-1 INFORMATION REPRESENTATION

Digital systems store, move, and process information. The information represents a 

broad range of phenomena from the physical and man-made world. The physical 

world is characterized by parameters such as weight, temperature, pressure, velocity, 

flow, and sound intensity and frequency. Most physical parameters are continuous, 

typically capable of taking on all possible values over a defined range. In contrast, in 

the man-made world, parameters can be discrete in nature, such as business records 

using words, quantities, and currencies, taking on values from an alphabet, the inte-

gers, or units of currency, respectively. In general, information systems must be able 

to represent both continuous and discrete information. Suppose that temperature, 

which is continuous, is measured by a sensor and converted to an electrical voltage, 

which is likewise continuous. We refer to such a continuous voltage as an analog  
signal, which is one possible way to represent temperature. But, it is also possible  

to represent temperature by an electrical voltage that takes on discrete values that 

occupy only a finite number of values over a range, for example, corresponding to 

integer degrees centigrade between -40 and +119. We refer to such a voltage as a 

digital signal. Alternatively, we can represent the discrete values by multiple voltage 

signals, each taking on a discrete value. At the extreme, each signal can be viewed as 

having only two discrete values, with multiple signals representing a large number of 

discrete values. For example, each of the 160 values just mentioned for temperature 

can be represented by a particular combination of eight two-valued signals. The sig-

nals in most present-day electronic digital systems use just two discrete values and 

are therefore said to be binary. The two discrete values used are often called 0 and 1, 

the digits for the binary number system.

We typically represent the two discrete values by ranges of voltage values 

called HIGH and LOW. Output and input voltage ranges are illustrated in  

Figure 1-1(a). The HIGH output voltage value ranges between 0.9 and 1.1 volts, and 

the LOW output voltage value between -0.1 and 0.1 volts. The high input range 

allows 0.6 to 1.1 volts to be recognized as a HIGH, and the low input range allows 
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 FIGURE 1-1 
Examples of Voltage Ranges and Waveforms for Binary Signals
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-0.1 to 0.4 volts to be recognized as a LOW. The fact that the input ranges are wider 

than the output ranges allows the circuits to function correctly in spite of variations 

in their behavior and undesirable “noise” voltages that may be added to or sub-

tracted from the outputs.

We give the output and input voltage ranges a number of different names. 

Among these are HIGH (H) and LOW (L), TRUE (T) and FALSE (F), and 1 and 0. 

It is natural to associate the higher voltage ranges with HIGH or H, and the lower 

voltage ranges with LOW or L. For TRUE and 1 and FALSE and 0, however, there is 

a choice. TRUE and 1 can be associated with either the higher or lower voltage range 

and FALSE and 0 with the other range. Unless otherwise indicated, we assume that 

TRUE and 1 are associated with the higher of the voltage ranges, H, and the FALSE 

and 0 are associated with the lower of the voltage ranges, L. This particular conven-

tion is called positive logic.

It is interesting to note that the values of voltages for a digital circuit in 

Figure 1-1(a) are still continuous, ranging from -0.1 to +1.1 volts. Thus, the voltage 

is actually analog! The actual voltages values for the output of a very high-speed 

digital circuit are plotted versus time in Figure 1-1(b). Such a plot is referred to as a 

waveform. The interpretation of the voltage as binary is based on a model using 

voltage ranges to represent discrete values 0 and 1 on the inputs and the outputs. 

The application of such a model, which redefines all voltage above 0.5 V as 1 and 

below 0.5 V as 0 in Figure 1-1(b), gives the waveform in Figure 1-1(c). The output 

has now been interpreted as binary, having only discrete values 1 and 0, with the 

actual voltage values removed. We note that digital circuits, made up of electronic 

devices called transistors, are designed to cause the outputs to occupy the two dis-

tinct output voltage ranges for 1 (H) and 0 (L) in Figure 1-1, whenever the outputs 

are not changing. In contrast, analog circuits are designed to have their outputs 

take on continuous values over their range, whether changing or not.

Since 0 and 1 are associated with the binary number system, they are the pre-

ferred names for the signal ranges. A binary digit is called a bit. Information is 

represented in digital computers by groups of bits. By using various coding tech-

niques, groups of bits can be made to represent not only binary numbers, but also 

other groups of discrete symbols. Groups of bits, properly arranged, can even  

specify to the computer the program instructions to be executed and the data to be 

processed.

Why is binary used? In contrast to the situation in Figure 1-1, consider a sys-

tem with 10 values representing the decimal digits. In such a system, the voltages 

available—say, 0 to 1.0 volts—could be divided into 10 ranges, each of length  

0.1 volt. A circuit would provide an output voltage within each of these 10 ranges. 

An input of a circuit would need to determine in which of the 10 ranges an applied 

voltage lies. If we wish to allow for noise on the voltages, then output voltage 

might be permitted to range over less than 0.05 volt for a given digit representa-

tion, and boundaries between inputs could vary by less than 0.05 volt. This would 

require complex and costly electronic circuits, and the output still could be dis-

turbed by small “noise” voltages or small variations in the circuits occurring 

during their manufacture or use. As a consequence, the use of such multivalued 

circuits is very limited. Instead, binary circuits are used in which correct circuit 
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operation can be achieved with significant variations in values of the two output 

voltages and the two input ranges. The resulting transistor circuit with an output 

that is either HIGH or LOW is simple, easy to design, and extremely reliable. In 

addition, this use of binary values makes the results calculated repeatable in the 

sense that the same set of input values to a calculation always gives exactly the 

same set of outputs. This is not necessarily the case for multivalued or analog cir-

cuits, in which noise voltages and small variations due to manufacture or circuit 

aging can cause results to differ at different times.

The Digital Computer

A block diagram of a digital computer is shown in Figure 1-2. The memory stores 

programs as well as input, output, and intermediate data. The datapath performs 

arithmetic and other data-processing operations as specified by the program. The 

control unit supervises the flow of information between the various units. A data-

path, when combined with the control unit, forms a component referred to as a cen-
tral processing unit, or CPU.

The program and data prepared by the user are transferred into memory by 

means of an input device such as a keyboard. An output device, such as an LCD (liq-

uid crystal display), displays the results of the computations and presents them to the 

user. A digital computer can accommodate many different input and output devices, 

such as DVD drives, USB flash drives, scanners, and printers. These devices use digi-

tal logic circuits, but often include analog electronic circuits, optical sensors, LCDs, 

and electromechanical components.

The control unit in the CPU retrieves the instructions, one by one, from the 

program stored in the memory. For each instruction, the control unit manipulates the 

datapath to execute the operation specified by the instruction. Both program and 

data are stored in memory. A digital computer can perform arithmetic computations, 

manipulate strings of alphabetic characters, and be programmed to make decisions 

based on internal and external conditions.

Memory

Control
Unit Datapath

Input/Output

CPU

 FIGURE 1-2 
Block Diagram of a Digital Computer
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Beyond the Computer

In terms of world impact, computers, such as the PC, are not the end of the story. 

Smaller, often less powerful, single-chip computers called microcomputers or micro-
controllers, or special-purpose computers called digital signal processors (DSPs) 

 actually are more prevalent in our lives. These computers are parts of everyday prod-

ucts and their presence is often not apparent. As a consequence of being integral 

parts of other products and often enclosed within them, they are called embedded 
systems. A generic block diagram of an embedded system is shown in Figure 1-3. 

Central to the system is the microcomputer (or its equivalent). It has many of the 

characteristics of the PC, but differs in the sense that its software programs are often 

permanently stored to provide only the functions required for the product. This soft-

ware, which is critical to the operation of the product, is an integral part of the em-

bedded system and referred to as embedded software. Also, the human interface of 

the microcomputer can be very limited or nonexistent. The larger information- 

storage components such as a hard drive and compact disk or DVD drive frequently 

are not present. The microcomputer contains some memory; if additional memory is 

needed, it can be added externally.

With the exception of the external memory, the hardware connected to the 

embedded microcomputer in Figure 1-3 interfaces with the product and/or the out-

side world. The input devices transform inputs from the product or outside world 

into electrical signals, and the output devices transform electrical signals into out-

puts to the product or outside world. The input and output devices are of two types, 

those which use analog signals and those which use digital signals. Examples of digi-

tal input devices include a limit switch which is closed or open depending on whether 

a force is applied to it and a keypad having ten decimal integer buttons. Examples of 
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 FIGURE 1-3 
Block Diagram of an Embedded System



24          CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION 

analog input devices include a thermistor which changes its electrical resistance in 

response to the temperature and a crystal which produces a charge (and a corre-

sponding voltage) in response to the pressure applied. Typically, electrical or elec-

tronic circuitry is required to “condition” the signal so that it can be read by the 

embedded system. Examples of digital output devices include relays (switches that 

are opened or closed by applied voltages), a stepper motor that responds to applied 

voltage pulses, or an LED digital display. Examples of analog output devices include 

a loudspeaker and a panel meter with a dial. The dial position is controlled by the 

interaction of the magnetic fields of a permanent magnet and an electromagnet 

driven by the voltage applied to the meter.

Next, we illustrate embedded systems by considering a temperature measure-

ment performed by using a wireless weather station. In addition, this example also 

illustrates analog and digital signals, including conversion between the signal types.

EXAMPLE 1-1 Temperature Measurement and Display

A wireless weather station measures a number of weather parameters at an outdoor 

site and transmits them for display to an indoor base station. Its operation can be 

 illustrated by considering the temperature measurement illustrated in Figure 1-4 

with reference to the block diagram in Figure 1-3. Two embedded microprocessors 

are used, one in the outdoor site and the other in the indoor base station.

The temperature at the outdoor site ranges continuously from -40°F to 

+115°F. Temperature values over one 24-hour period are plotted as a function of 

time in Figure 1-4(a). This temperature is measured by a sensor consisting of a therm-

istor (a resistance that varies with temperature) with a fixed current applied by an 

electronic circuit. This sensor provides an analog voltage that is proportional to the 

temperature. Using signal conditioning, this voltage is changed to a continuous volt-

age ranging between 0 and 15 volts, as shown in Figure 1-4(b).

The analog voltage is sampled at a rate of once per hour (a very slow sampling 

rate used just for illustration), as shown by the dots in Figure 1-4(b). Each value sam-

pled is applied to an analog-to-digital (A/D) converter, as in Figure 1-3, which replaces 

the value with a digital number written in binary and having decimal values between  

0 and 15, as shown in Figure 1-4(c). A binary number can be interpreted in decimal  

by multiplying the bits from left to right times the respective weights, 8, 4, 2, and 1,  

and adding the resulting values. For example, 0101 can be interpreted as 

0 * 8 + 1 * 4 + 0 * 2 + 1 * 1 = 5. In the process of conversion, the value of the 

temperature is quantized from an infinite number of values to just 16 values. 

Examining the correspondence between the temperature in Figure 1-4(a) and the volt-

age in Figure 1-4(b), we find that the typical digital value of temperature represents an 

actual temperature range up to 5 degrees above or below the digital value. For exam-

ple, the analog temperature range between -25 and -15 degrees is represented by the 

digital temperature value of -20 degrees. This discrepancy between the actual tem-

perature and the digital temperature is called the quantization error. In order to obtain 

greater precision, we would need to increase the number of bits beyond four in the 

output of the A/D converter. The hardware components for sensing, signal condition-

ing, and A/D conversion are shown in the upper left corner of Figure 1-3.
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Next, the digital value passes through the microcomputer to a wireless trans-

mitter as a digital output device in the lower right corner of Figure 1-3. The digital 

value is transmitted to a wireless receiver, which is a digital input device in the base 

station. The digital value enters the microcomputer at the base station, where calcu-

lations may be performed to adjust its value based on thermistor properties. The 

resulting value is to be displayed with an analog meter shown in Figure 1-4(f) as the 

output device. In order to support this display, the digital value is converted to an 

analog value by a digital-to-analog converter, giving the quantized, discrete voltage 

levels shown in Figure 1-4(d). Signal conditioning, such as processing of the output 

by a low-pass analog filter, is applied to give the continuous signal in Figure 1-4(e). 

This signal is applied to the analog voltage display, which has been labeled with the 

corresponding temperature values shown for five selected points over the 24-hour 

period in Figure 1-4(f). ■

You might ask: “How many embedded systems are there in my current living 

environment?” Do you have a cell phone? An iPod™? An Xbox™? A digital cam-

era? A microwave oven? An automobile? All of these are embedded systems. In 

fact, a late-model automobile can contain more than 50 microcontrollers, each con-

trolling a distinct embedded system, such as the engine control unit (ECU), auto-

matic braking system (ABS), and stability control unit (SCU). Further, a significant 

proportion of these embedded systems communicate with each other through a 

CAN (controller area network). A more recently developed automotive network, 

called FlexRay, provides high-speed, reliable communication for safety-critical tasks 

such as braking-by-wire and steering-by-wire, eliminating primary dependence on 

mechanical and hydraulic linkages and enhancing the potential for additional safety 

features such as collision avoidance. Table 1-1 lists examples of embedded systems 

classified by application area.

Considering the widespread use of personal computers and embedded sys-

tems, digital systems have a major impact on our lives, an impact that is not often 

fully appreciated. Digital systems play central roles in our medical diagnosis and 

treatment, in our educational institutions and workplaces, in moving from place to 

place, in our homes, in interacting with others, and in just having fun! The complexity 

of many of these systems requires considerable care at many levels of design abstrac-

tion to make the systems work. Thanks to the invention of the transistor and the 

integrated circuit and to the ingenuity and perseverance of millions of engineers and 

programmers, they indeed work and usually work well. In the remainder of this text, 

we take you on a journey that reveals how digital systems work and provide a 

detailed look at how to design digital systems and computers.

More on the Generic Computer

At this point, we will briefly discuss the generic computer and relate its various parts 

to the block diagram in Figure 1-2. At the lower left of the diagram at the beginning 

of this chapter is the heart of the computer, an integrated circuit called the processor. 

Modern processors such as this one are quite complex and consist of tens to hun-

dreds of millions of transistors. The processor contains four functional modules: the 

CPU, the FPU, the MMU, and the internal cache.
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We have already discussed the CPU. The FPU ( floating-point unit) is some-

what like the CPU, except that its datapath and control unit are specifically designed 

to perform floating-point operations. In essence, these operations process informa-

tion represented in the form of scientific notation (e.g., 1.234 * 107), permitting the 

generic computer to handle very large and very small numbers. The CPU and the 

FPU, in relation to Figure 1-2, each contain a datapath and a control unit.

The MMU is the memory management unit. The MMU plus the internal cache 

and the separate blocks near the bottom of the computer labeled “External Cache” 

and “RAM” (random-access memory) are all part of the memory in Figure 1-2. The 

two caches are special kinds of memory that allow the CPU and FPU to get at the 

data to be processed much faster than with RAM alone. RAM is what is most com-

monly referred to as memory. As its main function, the MMU causes the memory 

that appears to be available to the CPU to be much, much larger than the actual size 

of the RAM. This is accomplished by data transfers between the RAM and the hard 

drive shown at the top of the drawing of the generic computer. So the hard drive, 

which we discuss later as an input/output device, conceptually appears as a part of 

both the memory and input/output.

The connection paths shown between the processor, memory, and external 

cache are the pathways between integrated circuits. These are typically implemented 

 TABLE 1-1 
Embedded System Examples

Application Area Product

Banking, commerce and  

manufacturing

Copiers, FAX machines, UPC scanners, vending 

machines, automatic teller machines, automated 

warehouses, industrial robots, 3D printers

Communication Wireless access points, network routers, satellites

Games and toys Video games, handheld games, talking stuffed toys

Home appliances Digital alarm clocks, conventional and microwave 

ovens, dishwashers

Media CD players, DVD players, flat panel TVs, digital 

cameras, digital video cameras

Medical equipment Pacemakers, incubators, magnetic resonance 

imaging

Personal Digital watches, MP3 players, smart phones, 

wearable fitness trackers

Transportation and navigation Electronic engine controls, traffic light controllers, 

aircraft flight controls, global positioning systems
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as fine copper conductors on a printed circuit board. The connection paths below the 

bus interface are referred to as the processor bus. The connections above the bus 

interface are the input/output (I/O) bus. The processor bus and the I/O bus attached 

to the bus interface carry data having different numbers of bits and have different 

ways of controlling the movement of data. They may also operate at different speeds. 

The bus interface hardware handles these differences so that data can be communi-

cated between the two buses.

All of the remaining structures in the generic computer are considered part 

of I/O in Figure 1-2. In terms of sheer physical volume, these structures dominate. 

In order to enter information into the computer, a keyboard is provided. In order 

to view output in the form of text or graphics, a graphics adapter card and LCD 

(liquid crystal display) screen are provided. The hard drive, discussed previously, is 

an electromechanical magnetic storage device. It stores large quantities of infor-

mation in the form of magnetic flux on spinning disks coated with magnetic mate-

rials. In order to control the hard drive and transfer information to and from it, a 

drive controller is used. The keyboard, graphics adapter card, and drive controller 

card are all attached to the I/O bus. This allows these devices to communicate 

through the bus interface with the CPU and other circuitry connected to the pro-

cessor buses.

1-2 ABSTRACTION LAYERS IN COMPUTER SYSTEMS DESIGN

As described by Moggridge, design is the process of understanding all the relevant 

constraints for a problem and arriving at a solution that balances those constraints. 

In computer systems, typical constraints include functionality, speed, cost, power, 

area, and reliability. At the time that this text is being written in 2014, leading edge 

integrated circuits have billions of transistors—designing such a circuit one  transistor 

at a time is impractical. To manage that complexity, computer systems design is 

 typically performed in a “top down” approach, where the system is specified at a high 

level and then the design is decomposed into successively smaller blocks until a 

block is simple enough that it can be implemented. These blocks are then connected 

together to make the full system. The generic computer described in the previous 

section is a good example of blocks connected together to make a full system. This 

book begins with smaller blocks and then moves toward putting them together into 

larger, more complex blocks.

A fundamental aspect of the computer systems design process is the concept of 

“layers of abstraction.” Computer systems such as the generic computer can be 

viewed at several layers of abstraction from circuits to algorithms, with each higher 

layer of abstraction hiding the details and complexity of the layer below. Abstraction 

removes unnecessary implementation details about a component in the system so 

that a designer can focus on the aspects of the component that matter for the prob-

lem being solved. For example, when we write a computer program to add two vari-

ables and store the result in a third variable, we focus on the programming language 

constructs used to declare the variables and describe the addition operation. But 

when the program executes, what really happens is that electrical charge is moved 

around by transistors and stored in capacitive layers to represent the bits of data and 
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control signals necessary to perform the addition and store the result. It would be 

difficult to write programs if we had to directly describe the flow of electricity for 

individual bits. Instead, the details of controlling them are managed by several layers 

of abstractions that transform the program into a series of more detailed representa-

tions that eventually control the flow of electrical charges that implement the 

computation.

Figure 1-5 shows the typical layers of abstraction in contemporary computing 

systems. At the top of the abstraction layers, algorithms describe a series of steps that 

lead to a solution. These algorithms are then implemented as a program in a high-

level programming language such as C++, Python, or Java. When the program is run-

ning, it shares computing resources with other programs under the control of an 

operating system. Both the operating system and the program are composed of 

sequences of instructions that are particular to the processor running them; the set of 

instructions and the registers (internal data memory) available to the programmer 

are known as the instruction set architecture. The processor hardware is a particular 

implementation of the instruction set architecture, referred to as the microarchitec-

ture; manufacturers very often make several different microarchitectures that exe-

cute the same instruction set. A microarchitecture can be described as underlying 

sequences of transfers of data between registers. These register transfers can be 

decomposed into logic operations on sets of bits performed by logic gates, which are 

electronic circuits implemented with transistors or other physical devices that con-

trol the flow of electrons.

An important feature of abstraction is that lower layers of abstraction can usu-

ally be modified without changing the layers above them. For example, a program 

written in C++ can be compiled on any computer system with a C++ compiler and 

then executed. As another example, an executable program for the Intel™ x86 

instruction set architecture can run on any microarchitecture (implementation) of 

that architecture, whether that implementation is from Intel™ or AMD. Consequently, 

abstraction allows us to continue to use solutions at higher layers of abstraction even 

when the underlying implementations have changed.

This book is mainly concerned with the layers of abstraction from logic gates 

up to operating systems, focusing on the design of the hardware up to the interface 

between the hardware and the software. By understanding the interactions of the 

Algorithms
Programming Languages

Operating Systems
Instruction Set Architecture

Microarchitecture
Register Transfers

Logic Gates
Transistor Circuits 

 FIGURE 1-5 
Typical Layers of Abstraction in Modern Computer Systems
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layers of abstraction, we can choose the proper layer of abstraction on which to con-

centrate for a given design, ignoring unnecessary details and optimizing the aspects 

of the system that are likely to have the most impact on achieving the proper balance 

of constraints for a successful design. Oftentimes, the higher layers of abstraction 

have the potential for much more improvement in the design than can be found at 

the lower layers. For example, it might be possible to re-design a hardware circuit for 

multiplying two numbers so that it runs 20–50% faster than the original, but it might 

be possible to have much bigger impact on the speed of the overall circuit if the algo-

rithm is modified to not use multiplication at all. As technology has progressed and 

computer systems have become more complex, the design effort has shifted to higher 

layers of abstraction and, at the lower layers, much of the design process has been 

automated. Effectively using the automated processes requires an understanding of 

the fundamentals of design at those layers of abstraction.

An Overview of the Digital Design Process

The design of a digital computer system starts from the specification of the problem 

and culminates in representation of the system that can be implemented. The design 

process typically involves repeatedly transforming a representation of the system at 

one layer of abstraction to a representation at the next lower level of abstraction, for 

example, transforming register transfers into logic gates, which are in turn trans-

formed into transistor circuits.

While the particular details of the design process depend upon the layer of 

abstraction, the procedure generally involves specifying the behavior of the system, 

generating an optimized solution, and then verifying that the solution meets the spec-

ification both in terms of functionality and in terms of design constraints such as speed 

and cost. As a concrete example of the procedure, the following steps are the design 

procedure for combinational digital circuits that Chapters 2 and 3 will introduce:

1. Specification: Write a specification for the behavior of the circuit, if one is not 

already available.

2. Formulation: Derive the truth table or initial Boolean equations that define 

the required logical relationships between inputs and outputs.

3. Optimization: Apply two-level and multiple-level optimization to minimize 

the number of logic gates required. Draw a logic diagram or provide a netlist 

for the resulting circuit using logic gates.

4. Technology Mapping: Transform the logic diagram or netlist to a new diagram 

or netlist using the available implementation technology.

5. Verification: Verify the correctness of the final design.

For digital circuits, the specification can take a variety of forms, such as text or a 

description in a hardware description language (HDL), and should include the respec-

tive symbols or names for the inputs and outputs. Formulation converts the specifica-

tion into forms that can be optimized. These forms are typically truth tables or Boolean 

expressions. It is important that verbal specifications be interpreted correctly when 

formulating truth tables or expressions. Often the specifications are incomplete, and 

any wrong interpretation may result in an incorrect truth table or expression.




