
G
lo

ba
l

ed
it

io
n

For these Global Editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. This Global Edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization, and
adaptation from the North American version.

Logic and C
om

puter D
esign Fundam

entals
M

ano
K

im
e

M
artin

fift
h

ed

it
io

n

Global
edition

Global
edition

 Morris Mano • Charles R. Kime • Tom Martin

Logic and Computer Design Fundamentals
 fifth edition

This is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. If you
purchased this book within the United States
or Canada, you should be aware that it has
been imported without the approval of the
Publisher or Author.

Pearson Global Edition

Mano_1292096071_mech.indd 1 18/06/15 8:39 PM

Logic and
Computer

Design
Fundamentals

Fifth Edition

Global Edition

M. Morris Mano
California State University, Los Angeles

Charles R. Kime
University of Wisconsin, Madison

Tom Martin
Virginia Tech

Boston Columbus Indianapolis New York San Francisco Hoboken

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Pearson Education Limited

Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world

Visit us on the World Wide Web at:

www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The rights of Morris Mano, Charles R. Kime, and Tom Martin, to be identified as the authors of this work, have been asserted by them

in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Logic and Computer Design Fundamentals, ISBN 978-0-13-376063-7, by
Morris Mano, Charles R. Kime, and Tom Martin, published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or

a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10

Kirby Street, London EC1N 8TS.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those designations

appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, re-

search, and testing of theories and programs to determine their effectiveness. The author and publi sher make no warranty of any kind,

expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be

liable in any event for incidental or consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2012 by Microsoft Corporation. Used with permission from Microsoft.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY

OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF

THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED “AS IS”

WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM

ALLWARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION, INCLUDING ALLWARRANTIES

AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS

RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF

CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE

OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES. THE DOCUMENTS AND RELATED

GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.

CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE

SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)

DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE

VERSION SPECIFIED.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-09607-1

ISBN 13: 978-1-292-09607-0

Typeset by Jouve, in 10/12 Times Ten LT Std

Printed and bound in Great Britain by Courier Westford

Vice President and Editorial Director, ECS: Marcia J. Horton
Executive Editor: Tracy Johnson
Acquisitions Editor: Julie Bai
Assistant Acquisitions Editor, Global Editions: Aditee Agarwal
Executive Marketing Manager: Tim Galligan

Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno

Production Project Manager: Greg Dulles
Project Editor, Global Editions: Donald Villamero
Program Manager: Joanne Manning

Global HE Director of Vendor Sourcing and

Procurement: Diane Hynes

Director of Operations: Nick Sklitsis

Operations Specialist: Maura Zaldivar-Garcia
Senior Production Manufacturing Controller, Global Editions:

Trudy Kimber
Media Production Manager, Global Editions: Vikram Kumar
Cover Art: © Shaparniy/Shutterstock
Manager, Rights and Permissions: Rachel Youdelman
Associate Project Manager, Rights and Permissions:

Timothy Nicholls
Composition: Jouve India

 3

Preface 12

 Chapter 1 19

Digital Systems and Information 19
1-1 Information Representation 20

The Digital Computer 22

Beyond the Computer 23

More on the Generic Computer 26

1-2 Abstraction Layers in Computer Systems Design 28

An Overview of the Digital Design Process 30

1-3 Number Systems 31

Binary Numbers 33

Octal and Hexadecimal Numbers 34

Number Ranges 36

1-4 Arithmetic Operations 36

Conversion from Decimal to Other Bases 39

1-5 Decimal Codes 41

1-6 Alphanumeric Codes 42

ASCII Character Code 42

Parity Bit 45

1-7 Gray Codes 46

1-8 Chapter Summary 48

References 49

Problems 49

 Chapter 2 53

Combinational Logic Circuits 53
2-1 Binary Logic and Gates 54

Binary Logic 54

Logic Gates 56

HDL Representations of Gates 60

Contents

4 Contents

2-2 Boolean Algebra 61

Basic Identities of Boolean Algebra 65

Algebraic Manipulation 67

Complement of a Function 70

2-3 Standard Forms 71

Minterms and Maxterms 71

Sum of Products 75

Product of Sums 76

2-4 Two-Level Circuit Optimization 77

Cost Criteria 77

Map Structures 79

Two-Variable Maps 81

Three-Variable Maps 83

2-5 Map Manipulation 87

Essential Prime Implicants 87

Nonessential Prime Implicants 89

Product-of-Sums Optimization 90

Don’t-Care Conditions 91

2-6 Exclusive-Or Operator and Gates 94

Odd Function 94

2-7 Gate Propagation Delay 96

2-8 HDLs Overview 98

Logic Synthesis 100

2-9 HDL Representations—VHDL 102

2-10 HDL Representations—Verilog 110

2-11 Chapter Summary 117

References 118

Problems 118

 Chapter 3 129

Combinational Logic Design 129
3-1 Beginning Hierarchical Design 130

3-2 Technology Mapping 134

3-3 Combinational Functional Blocks 138

3-4 Rudimentary Logic Functions 138

Value-Fixing, Transferring, and Inverting 139

Multiple-Bit Functions 139

Enabling 142

3-5 Decoding 144

Decoder and Enabling Combinations 148

Decoder-Based Combinational Circuits 151

3-6 Encoding 153

Priority Encoder 154

Encoder Expansion 155

Contents 5

3-7 Selecting 156

Multiplexers 156

Multiplexer-Based Combinational Circuits 166

3-8 Iterative Combinational Circuits 171

3-9 Binary Adders 173

Half Adder 173

Full Adder 174

Binary Ripple Carry Adder 175

3-10 Binary Subtraction 177

Complements 178

Subtraction Using 2s Complement 180

3-11 Binary Adder-Subtractors 181

Signed Binary Numbers 182

Signed Binary Addition and Subtraction 184

Overflow 186

HDL Models of Adders 188

Behavioral Description 190

3-12 Other Arithmetic Functions 193

Contraction 194

Incrementing 195

Decrementing 196

Multiplication by Constants 196

Division by Constants 198

Zero Fill and Extension 198

3-13 Chapter Summary 199

References 199

Problems 200

 Chapter 4 213

Sequential Circuits 213
4-1 Sequential Circuit Definitions 214

4-2 Latches 217

SR and SR Latches 217

D Latch 220

4-3 Flip-Flops 220

Edge-Triggered Flip-Flop 222

Standard Graphics Symbols 223

Direct Inputs 225

4-4 Sequential Circuit Analysis 226

Input Equations 226

State Table 227

State Diagram 229

Sequential Circuit Simulation 232

4-5 Sequential Circuit Design 234

Design Procedure 234

Finding State Diagrams and State Tables 235

State Assignment 242

Designing with D Flip-Flops 243

Designing with Unused States 246

Verification 248

4-6 State-Machine Diagrams and Applications 250

State-Machine Diagram Model 252

Constraints on Input Conditions 254

Design Applications Using State-Machine Diagrams 256

4-7 HDL Representation for Sequential Circuits—VHDL 264

4-8 HDL Representation for Sequential Circuits—Verilog 273

4-9 Flip-Flop Timing 282

4-10 Sequential Circuit Timing 283

4-11 Asynchronous Interactions 286

4-12 Synchronization and Metastability 287

4-13 Synchronous Circuit Pitfalls 293

4-14 Chapter Summary 294

References 295

Problems 296

 Chapter 5 311

Digital Hardware Implementation 311
5-1 The Design Space 311

Integrated Circuits 311

CMOS Circuit Technology 312

Technology Parameters 318

5-2 Programmable Implementation Technologies 320

Read-Only Memory 322

Programmable Logic Array 324

Programmable Array Logic Devices 327

Field Programmable Gate Array 329

5-3 Chapter Summary 334

References 334

Problems 334

 Chapter 6 339

Registers and Register Transfers 339
6-1 Registers and Load Enable 340

Register with Parallel Load 341

6-2 Register Transfers 343

6-3 Register Transfer Operations 345

6-4 Register Transfers in VHDL and Verilog 347

6 Contents

6-5 Microoperations 348

Arithmetic Microoperations 349

Logic Microoperations 351

Shift Microoperations 353

6-6 Microoperations on a Single Register 353

Multiplexer-Based Transfers 354

Shift Registers 356

Ripple Counter 361

Synchronous Binary Counters 363

Other Counters 367

6-7 Register-Cell Design 370

6-8 Multiplexer and Bus-Based Transfers for

Multiple Registers 375

High-Impedance Outputs 377

Three-State Bus 379

6-9 Serial Transfer and Microoperations 380

Serial Addition 381

6-10 Control of Register Transfers 383

Design Procedure 384

6-11 HDL Representation for Shift Registers

and Counters—VHDL 400

6-12 HDL Representation for Shift Registers

and Counters—Verilog 402

6-13 Microprogrammed Control 404

6-14 Chapter Summary 406

References 407

Problems 407

Chapter 7 419

Memory Basics 419
7-1 Memory Definitions 419

7-2 Random-Access Memory 420

Write and Read Operations 422

Timing Waveforms 423

Properties of Memory 425

7-3 SRAM Integrated Circuits 425

Coincident Selection 427

7-4 Array of SRAM ICs 431

7-5 DRAM ICs 434

DRAM Cell 435

DRAM Bit Slice 436

7-6 DRAM Types 440

Synchronous DRAM (SDRAM) 442

Double-Data-Rate SDRAM (DDR SDRAM) 444

Contents 7

RAMBUS® DRAM (RDRAM) 445

7-7 Arrays of Dynamic RAM ICs 446

7-8 Chapter Summary 446

References 447

Problems 447

 Chapter 8 449

Computer Design Basics 449
8-1 Introduction 450

8-2 Datapaths 450

8-3 The Arithmetic/Logic Unit 453

Arithmetic Circuit 453

Logic Circuit 456

Arithmetic/Logic Unit 458

8-4 The Shifter 459

Barrel Shifter 460

8-5 Datapath Representation 461

8-6 The Control Word 463

8-7 A Simple Computer Architecture 469

Instruction Set Architecture 469

Storage Resources 470

Instruction Formats 471

Instruction Specifications 473

8-8 Single-Cycle Hardwired Control 476

Instruction Decoder 477

Sample Instructions and Program 479

Single-Cycle Computer Issues 482

8-9 Multiple-Cycle Hardwired Control 483

Sequential Control Design 487

8-10 Chapter Summary 492

References 494

Problems 494

 Chapter 9 501

Instruction Set Architecture 501
9-1 Computer Architecture Concepts 501

Basic Computer Operation Cycle 503

Register Set 503

9-2 Operand Addressing 504

Three-Address Instructions 505

Two-Address Instructions 505

One-Address Instructions 506

8 Contents

Zero-Address Instructions 506

Addressing Architectures 507

9-3 Addressing Modes 510

Implied Mode 511

Immediate Mode 511

Register and Register-Indirect Modes 512

Direct Addressing Mode 512

Indirect Addressing Mode 513

Relative Addressing Mode 514

Indexed Addressing Mode 515

Summary of Addressing Modes 516

9-4 Instruction Set Architectures 517

9-5 Data-Transfer Instructions 518

Stack Instructions 518

Independent versus Memory-Mapped I/O 520

9-6 Data-Manipulation Instructions 521

Arithmetic Instructions 521

Logical and Bit-Manipulation Instructions 522

Shift Instructions 524

9-7 Floating-Point Computations 525

Arithmetic Operations 526

Biased Exponent 527

Standard Operand Format 528

9-8 Program Control Instructions 530

Conditional Branch Instructions 531

Procedure Call and Return Instructions 533

9-9 Program Interrupt 535

Types of Interrupts 536

Processing External Interrupts 537

9-10 Chapter Summary 538

References 539

Problems 539

Chapter 10 547

Risc and Cisc Central Processing Units 547
10-1 Pipelined Datapath 548

Execution of Pipeline Microoperations 552

10-2 Pipelined Control 553

Pipeline Programming and Performance 555

10-3 The Reduced Instruction Set Computer 557

Instruction Set Architecture 557

Addressing Modes 560

Datapath Organization 561

Control Organization 564

Contents 9

Data Hazards 566

Control Hazards 573

10-4 The Complex Instruction Set Computer 577

ISA Modifications 579

Datapath Modifications 580

Control Unit Modifications 582

Microprogrammed Control 583

Microprograms for Complex Instructions 585

10-5 More on Design 588

Advanced CPU Concepts 589

Recent Architectural Innovations 592

10-6 Chapter Summary 595

References 596

Problems 597

 Chapter 11 601

Input—Output and Communication 601
11-1 Computer I/O 601

11-2 Sample Peripherals 602

Keyboard 602

Hard Drive 603

Liquid Crystal Display Screen 605

I/O Transfer Rates 608

11-3 I/O Interfaces 608

I/O Bus and Interface Unit 609

Example of I/O Interface 610

Strobing 611

Handshaking 613

11-4 Serial Communication 614

Synchronous Transmission 615

The Keyboard Revisited 616

A Packet-Based Serial I/O Bus 617

11-5 Modes of Transfer 620

Example of Program-Controlled Transfer 621

Interrupt-Initiated Transfer 622

11-6 Priority Interrupt 624

Daisy Chain Priority 624

Parallel Priority Hardware 626

11-7 Direct Memory Access 627

DMA Controller 628

DMA Transfer 630

11-8 Chapter Summary 631

References 631

Problems 632

10 Contents

 Chapter 12 635

Memory Systems 635
12-1 Memory Hierarchy 635

12-2 Locality of Reference 638

12-3 Cache Memory 640

Cache Mappings 642

Line Size 647

Cache Loading 648

Write Methods 649

Integration of Concepts 650

Instruction and Data Caches 652

Multiple-Level Caches 653

12-4 Virtual Memory 653

Page Tables 655

Translation Lookaside Buffer 657

Virtual Memory and Cache 659

12-5 Chapter Summary 659

References 660

Problems 660

Index 664

Contents 11

12

Preface

The objective of this text is to serve as a cornerstone for the learning of logic design,

digital system design, and computer design by a broad audience of readers. This fifth

edition marks the continued evolution of the text contents. Beginning as an adap-

tation of a previous book by the first author in 1997, it continues to offer a unique

combination of logic design and computer design principles with a strong hardware

emphasis. Over the years, the text has followed industry trends by adding new mater-

ial such as hardware description languages, removing or de-emphasizing material of

declining importance, and revising material to track changes in computer technology

and computer-aided design.

NEW TO THIS EDITION
The fifth edition reflects changes in technology and design practice that require com-

puter system designers to work at higher levels of abstraction and manage larger

ranges of complexity than they have in the past. The level of abstraction at which

logic, digital systems, and computers are designed has moved well beyond the level

at which these topics are typically taught. The goal in updating the text is to more

effectively bridge the gap between existing pedagogy and practice in the design of

computer systems, particularly at the logic level. At the same time, the new edition

maintains an organization that should permit instructors to tailor the degree of tech-

nology coverage to suit both electrical and computer engineering and computer sci-

ence audiences. The primary changes to this edition include:

Chapter 1 has been updated to include a discussion of the layers of abstractions

in computing systems and their role in digital design, as well as an overview of

the digital design process. Chapter 1 also has new material on alphanumeric

codes for internationalization.

The textbook introduces hardware description languages (HDLs) earlier, start-

ing in Chapter 2. HDL descriptions of circuits are presented alongside logic sche-

matics and state diagrams throughout the chapters on combinational and

sequential logic design to indicate the growing importance of HDLs in contem-

porary digital system design practice. The material on propagation delay, which is

a first-order design constraint in digital systems, has been moved into Chapter 2.

Chapter 3 combines the functional block material from the old Chapter 3 and

the arithmetic blocks from the old Chapter 4 to present a set of commonly

Preface 13

occurring combinational logic functional blocks. HDL models of the func-

tional blocks are presented throughout the chapter. Chapter 3 introduces the

concept of hierarchical design.

Sequential circuits appear in Chapter 4, which includes both the description of

design processes from the old Chapter 5, and the material on sequential circuit

timing, synchronization of inputs, and metastability from the old Chapter 6.

The description of JK and T flip-flops has been removed from the textbook

and moved to the online Companion Website.

Chapter 5 describes topics related to the implementation of digital hardware,

including design of complementary metal-oxide (CMOS) gates and program-

mable logic. In addition to much of the material from the old Chapter 6,

Chapter 5 now includes a brief discussion of the effect of testing and verifica-

tion on the cost of a design. Since many courses employing this text have lab

exercises based upon field programmable gate arrays (FPGAs), the descrip-

tion of FPGAs has been expanded, using a simple, generic FPGA architecture

to explain the basic programmable elements that appear in many commer-

cially available FPGA families.

The remaining chapters, which cover computer design, have been updated to

reflect changes in the state-of-the art since the previous edition appeared.

Notable changes include moving the material on high-impedance buffers from

the old Chapter 2 to the bus transfer section of Chapter 6 and adding a discus-

sion of how procedure call and return instructions can be used to implement

function calls in high level languages in Chapter 9.

Offering integrated coverage of both digital and computer design, this edition

of Logic and Computer Design Fundamentals features a strong emphasis on fun-

damentals underlying contemporary design. Understanding of the material is sup-

ported by clear explanations and a progressive development of examples ranging

from simple combinational applications to a CISC architecture built upon a RISC

core. A thorough coverage of traditional topics is combined with attention to com-

puter-aided design, problem formulation, solution verification, and the building of

problem-solving skills. Flexibility is provided for selective coverage of logic design,

digital system design, and computer design topics, and for coverage of hardware

description languages (none, VHDL, or Verilog®).

With these revisions, Chapters 1 through 4 of the book treat logic design,

Chapters 5 through 7 deal with digital systems design, and Chapters 8 through 12

focus on computer design. This arrangement provides solid digital system design

fundamentals while accomplishing a gradual, bottom-up development of funda-

mentals for use in top-down computer design in later chapters. Summaries of the

topics covered in each chapter follow.

Logic Design

Chapter 1, Digital Systems and Information, introduces digital computers, com-

puter systems abstraction layers, embedded systems, and information representation

including number systems, arithmetic, and codes.

14 Preface

Chapter 2, Combinational Logic Circuits, deals with gate circuits and their

types and basic ideas for their design and cost optimization. Concepts include

Boolean algebra, algebraic and Karnaugh-map optimization, propagation delay, and

gate-level hardware description language models using structural and dataflow mod-

els in both VHDL and Verilog.

Chapter 3, Combinational Logic Design, begins with an overview of a con-

temporary logic design process. The details of steps of the design process including

problem formulation, logic optimization, technology mapping to NAND and NOR

gates, and verification are covered for combinational logic design examples. In addi-

tion, the chapter covers the functions and building blocks of combinational design

including enabling and input-fixing, decoding, encoding, code conversion, selecting,

distributing, addition, subtraction, incrementing, decrementing, filling, extension and

shifting, and their implementations. The chapter includes VHDL and Verilog models

for many of the logic blocks.

Chapter 4, Sequential Circuits, covers sequential circuit analysis and design.

Latches and edge-triggered flip-flops are covered with emphasis on the D type.

Emphasis is placed on state machine diagram and state table formulation. A com-

plete design process for sequential circuits including specification, formulation, state

assignment, flip-flop input and output equation determination, optimization, technol-

ogy mapping, and verification is developed. A graphical state machine diagram model

that represents sequential circuits too complex to model with a conventional state

diagram is presented and illustrated by two real world examples. The chapter includes

VHDL and Verilog descriptions of a flip-flop and a sequential circuit, introducing

procedural behavioral VHDL and Verilog language constructs as well as test benches

for verification. The chapter concludes by presenting delay and timing for sequential

circuits, as well as synchronization of asynchronous inputs and metastability.

Digital Systems Design

Chapter 5, Digital Hardware Implementation, presents topics focusing on various

aspects of underlying technology including the MOS transistor and CMOS circuits,

and programmable logic technologies. Programmable logic covers read-only memo-

ries, programmable logic arrays, programmable array logic, and field programmable

gate arrays (FPGAs). The chapter includes examples using a simple FPGA architec-

ture to illustrate many of the programmable elements that appear in more complex,

commercially available FPGA hardware.

Chapter 6, Registers and Register Transfers, covers registers and their applica-

tions. Shift register and counter design are based on the combination of flip-flops

with functions and implementations introduced in Chapters 3 and 4. Only the ripple

counter is introduced as a totally new concept. Register transfers are considered

for both parallel and serial designs and time–space trade-offs are discussed. A sec-

tion focuses on register cell design for multifunction registers that perform multiple

operations. A process for the integrated design of datapaths and control units using

register transfer statements and state machine diagrams is introduced and illustrated

by two real world examples. Verilog and VHDL descriptions of selected register

types are introduced.

Chapter 7, Memory Basics, introduces static random access memory (SRAM)

and dynamic random access memory (DRAM), and basic memory systems. It also

describes briefly various distinct types of DRAMs.

Computer design

Chapter 8, Computer Design Basics, covers register files, function units, datapaths,

and two simple computers: a single-cycle computer and a multiple-cycle computer.

The focus is on datapath and control unit design formulation concepts applied to

implementing specified instructions and instruction sets in single-cycle and multiple-

cycle designs.

Chapter 9, Instruction Set Architecture, introduces many facets of instruc-

tion set architecture. It deals with address count, addressing modes, architectures,

and the types of instructions and presents floating-point number representation

and operations. Program control architecture is presented including procedure

calls and interrupts.

Chapter 10, RISC and CISC Processors, covers high-performance processor

concepts including a pipelined RISC processor and a CISC processor. The CISC

processor, by using microcoded hardware added to a modification of the RISC

processor, permits execution of the CISC instruction set using the RISC pipeline,

an approach used in contemporary CISC processors. Also, sections describe high-

performance CPU concepts and architecture innovations including two examples

of multiple CPU microprocessors.

Chapter 11, Input–Output and Communication, deals with data transfer

between the CPU and memory, input–output interfaces and peripheral devices. Dis-

cussions of a keyboard, a Liquid Crystal Display (LCD) screen, and a hard drive as

peripherals are included, and a keyboard interface is illustrated. Other topics range

from serial communication, including the Universal Serial Bus (USB), to interrupt

system implementation.

Chapter 12, Memory Systems, focuses on memory hierarchies. The concept of

locality of reference is introduced and illustrated by consideration of the cache/main

memory and main memory/hard drive relationships. An overview of cache design

parameters is provided. The treatment of memory management focuses on paging

and a translation lookaside buffer supporting virtual memory.

In addition to the text itself, a Companion Website and an Instructor’s Manual

are provided. Companion Website (www.pearsonglobaleditions.com/Mano) content

includes the following: 1) reading supplements including material deleted from prior

editions, 2) VHDL and Verilog source files for all examples, 3) links to computer-

aided design tools for FPGA design and HDL simulation, 4) solutions for about

one-third of all text chapter problems, 5) errata, 6) PowerPoint® slides for Chapters 1

through 8, 7) projection originals for complex figures and tables from the text, and

8) site news sections for students and instructors pointing out new material, updates,

and corrections. Instructors are encouraged to periodically check the instructor’s site

news so that they are aware of site changes. Instructor’s Manual content includes

suggestions for use of the book and all problem solutions. Online access to this man-

ual is available from Pearson to instructors at academic institutions who adopt the

Preface 15

book for classroom use. The suggestions for use provide important detailed informa-

tion for navigating the text to fit with various course syllabi.

Because of its broad coverage of both logic and computer design, this book

serves several different objectives in sophomore through junior level courses. Chapters

1 through 9 with selected sections omitted, provide an overview of hardware for com-

puter science, computer engineering, electrical engineering, or engineering students in

general in a single semester course. Chapters 1 through 4 possibly with selected parts

of 5 through 7 give a basic introduction to logic design, which can be completed in a

single quarter for electrical and computer engineering students. Covering Chapters

1 through 7 in a semester provides a stronger, more contemporary logic design treat-

ment. The entire book, covered in two quarters, provides the basics of logic and com-

puter design for computer engineering and science students. Coverage of the entire

book with appropriate supplementary material or a laboratory component can fill a

two-semester sequence in logic design and computer architecture. Due to its moder-

ately paced treatment of a wide range of topics, the book is ideal for self-study by engi-

neers and computer scientists. Finally, all of these various objectives can also benefit

from use of reading supplements provided on the Companion Website.

The authors would like to acknowledge the instructors whose input contributed

to the previous edition of the text and whose influence is still apparent in the current

edition, particularly Professor Bharat Bhuva, Vanderbilt University; Professor Donald

Hung, San Jose State University; and Professors Katherine Compton, Mikko Lipasti,

Kewal Saluja, and Leon Shohet, and Faculty Associate Michael Morrow, ECE, Uni-

versity of Wisconsin, Madison. We appreciate corrections to the previous editions pro-

vided by both instructors and students, most notably, those from Professor Douglas

De Boer of Dordt College. In getting ready to prepare to think about getting started

to commence planning to begin working on the fifth edition, I received valuable feed-

back on the fourth edition from Patrick Schaumont and Cameron Patterson at Virginia

Tech, and Mark Smith at the Royal Institute of Technology (KTH) in Stockholm, Swe-

den. I also benefited from many discussions with Kristie Cooper and Jason Thweatt

at Virginia Tech about using the fourth edition in the updated version of our depart-

ment’s Introduction to Computer Engineering course. I would also like to express

my appreciation to the folks at Pearson for their hard work on this new edition. In

particular, I would like to thank Andrew Gilfillan for choosing me to be the new third

author and for his help in planning the new edition; Julie Bai for her deft handling of

the transition after Andrew moved to another job, and for her guidance, support, and

invaluable feedback on the manuscript; Pavithra Jayapaul for her help in text produc-

tion and her patience in dealing with my delays (especially in writing this preface!);

and Scott Disanno and Shylaja Gattupalli for their guidance and care in producing the

text. Special thanks go to Morris Mano and Charles Kime for their efforts in writing

the previous editions of this book. It is an honor and a privilege to have been chosen as

their successor. Finally, I would like to thank Karen, Guthrie, and Eli for their patience

and support while I was writing, especially for keeping our mutt Charley away from

this laptop so that he didn’t eat the keys like he did with its short-lived predecessor.

Tom Martin

Blacksburg, Virginia

16 Preface

GLOBAL EDITION

The publishers would like to thank the following for their contribution to the Global

Edition:

Contributors

Chiranjib Koley, Associate Professor, National Institute of Technology, Durgapur

Lyla B. Das, Associate Professor, National Institute of Technology, Calicut

Reviewers

Debaprasad Das, Professor, Assam University
Moumita Mitra Manna, Lecturer of Computer Science and Applications at Bangabasi
College, University of Calcutta
Piyali Sengupta, Freelance

Preface 17

Processor

Graphics Adapter

Drive Controller
Bus Interface

Keyboard

RAM

External
Cache

Hard Drive

FPU
CPU MMU

Internal
Cache

LCD
Screen

 19

C H A P T E R

Digital Systems
and Information

1

This book deals with logic circuits and digital computers. Early computers were used

for computations with discrete numeric elements called digits (the Latin word for

digital computer. The use of “digital” spread from the

computer to logic circuits and other systems that use discrete elements of information,

giving us the terms digital circuits and digital systems. The term logic is applied to circuits

computers are based on logic circuits, they operate on patterns of elements from these

two-valued sets, which are used to represent, among other things, the decimal digits.

Today, the term “digital circuits” is viewed as synonymous with the term “logic circuits.”

The general-purpose digital computer is a digital system that can follow a stored

sequence of instructions, called a program, that operates on data. The user can specify

processing tasks, ranging over a very wide spectrum of applications. This makes the

learning the concepts, methods, and tools of digital system design. To this end, we use

generic computer and see how they relate to a block diagram commonly used to

programming computers constructed using billions of transistors. Otherwise, the

remainder of the chapter focuses on the digital systems in our daily lives and introduces

approaches for representing information in digital circuits and systems.

20 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

1-1 INFORMATION REPRESENTATION

Digital systems store, move, and process information. The information represents a

broad range of phenomena from the physical and man-made world. The physical

world is characterized by parameters such as weight, temperature, pressure, velocity,

flow, and sound intensity and frequency. Most physical parameters are continuous,

typically capable of taking on all possible values over a defined range. In contrast, in

the man-made world, parameters can be discrete in nature, such as business records

using words, quantities, and currencies, taking on values from an alphabet, the inte-

gers, or units of currency, respectively. In general, information systems must be able

to represent both continuous and discrete information. Suppose that temperature,

which is continuous, is measured by a sensor and converted to an electrical voltage,

which is likewise continuous. We refer to such a continuous voltage as an analog
signal, which is one possible way to represent temperature. But, it is also possible

to represent temperature by an electrical voltage that takes on discrete values that

occupy only a finite number of values over a range, for example, corresponding to

integer degrees centigrade between -40 and +119. We refer to such a voltage as a

digital signal. Alternatively, we can represent the discrete values by multiple voltage

signals, each taking on a discrete value. At the extreme, each signal can be viewed as

having only two discrete values, with multiple signals representing a large number of

discrete values. For example, each of the 160 values just mentioned for temperature

can be represented by a particular combination of eight two-valued signals. The sig-

nals in most present-day electronic digital systems use just two discrete values and

are therefore said to be binary. The two discrete values used are often called 0 and 1,

the digits for the binary number system.

We typically represent the two discrete values by ranges of voltage values

called HIGH and LOW. Output and input voltage ranges are illustrated in

Figure 1-1(a). The HIGH output voltage value ranges between 0.9 and 1.1 volts, and

the LOW output voltage value between -0.1 and 0.1 volts. The high input range

allows 0.6 to 1.1 volts to be recognized as a HIGH, and the low input range allows

1.0
0.9

0.6

0.4

0.0
Volts

HIGH

LOW

HIGH

LOW

OUTPUT INPUT

0.1

(a) Example voltage ranges

(b) Time-dependent voltage

 (c) Binary model of time-dependent voltage

1

0

1.0

0.5

0.0

Voltage (Volts)

Time

Time

 FIGURE 1-1
Examples of Voltage Ranges and Waveforms for Binary Signals

1-1 / Information Representation 21

-0.1 to 0.4 volts to be recognized as a LOW. The fact that the input ranges are wider

than the output ranges allows the circuits to function correctly in spite of variations

in their behavior and undesirable “noise” voltages that may be added to or sub-

tracted from the outputs.

We give the output and input voltage ranges a number of different names.

Among these are HIGH (H) and LOW (L), TRUE (T) and FALSE (F), and 1 and 0.

It is natural to associate the higher voltage ranges with HIGH or H, and the lower

voltage ranges with LOW or L. For TRUE and 1 and FALSE and 0, however, there is

a choice. TRUE and 1 can be associated with either the higher or lower voltage range

and FALSE and 0 with the other range. Unless otherwise indicated, we assume that

TRUE and 1 are associated with the higher of the voltage ranges, H, and the FALSE

and 0 are associated with the lower of the voltage ranges, L. This particular conven-

tion is called positive logic.

It is interesting to note that the values of voltages for a digital circuit in

Figure 1-1(a) are still continuous, ranging from -0.1 to +1.1 volts. Thus, the voltage

is actually analog! The actual voltages values for the output of a very high-speed

digital circuit are plotted versus time in Figure 1-1(b). Such a plot is referred to as a

waveform. The interpretation of the voltage as binary is based on a model using

voltage ranges to represent discrete values 0 and 1 on the inputs and the outputs.

The application of such a model, which redefines all voltage above 0.5 V as 1 and

below 0.5 V as 0 in Figure 1-1(b), gives the waveform in Figure 1-1(c). The output

has now been interpreted as binary, having only discrete values 1 and 0, with the

actual voltage values removed. We note that digital circuits, made up of electronic

devices called transistors, are designed to cause the outputs to occupy the two dis-

tinct output voltage ranges for 1 (H) and 0 (L) in Figure 1-1, whenever the outputs

are not changing. In contrast, analog circuits are designed to have their outputs

take on continuous values over their range, whether changing or not.

Since 0 and 1 are associated with the binary number system, they are the pre-

ferred names for the signal ranges. A binary digit is called a bit. Information is

represented in digital computers by groups of bits. By using various coding tech-

niques, groups of bits can be made to represent not only binary numbers, but also

other groups of discrete symbols. Groups of bits, properly arranged, can even

specify to the computer the program instructions to be executed and the data to be

processed.

Why is binary used? In contrast to the situation in Figure 1-1, consider a sys-

tem with 10 values representing the decimal digits. In such a system, the voltages

available—say, 0 to 1.0 volts—could be divided into 10 ranges, each of length

0.1 volt. A circuit would provide an output voltage within each of these 10 ranges.

An input of a circuit would need to determine in which of the 10 ranges an applied

voltage lies. If we wish to allow for noise on the voltages, then output voltage

might be permitted to range over less than 0.05 volt for a given digit representa-

tion, and boundaries between inputs could vary by less than 0.05 volt. This would

require complex and costly electronic circuits, and the output still could be dis-

turbed by small “noise” voltages or small variations in the circuits occurring

during their manufacture or use. As a consequence, the use of such multivalued

circuits is very limited. Instead, binary circuits are used in which correct circuit

22 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

operation can be achieved with significant variations in values of the two output

voltages and the two input ranges. The resulting transistor circuit with an output

that is either HIGH or LOW is simple, easy to design, and extremely reliable. In

addition, this use of binary values makes the results calculated repeatable in the

sense that the same set of input values to a calculation always gives exactly the

same set of outputs. This is not necessarily the case for multivalued or analog cir-

cuits, in which noise voltages and small variations due to manufacture or circuit

aging can cause results to differ at different times.

The Digital Computer

A block diagram of a digital computer is shown in Figure 1-2. The memory stores

programs as well as input, output, and intermediate data. The datapath performs

arithmetic and other data-processing operations as specified by the program. The

control unit supervises the flow of information between the various units. A data-

path, when combined with the control unit, forms a component referred to as a cen-
tral processing unit, or CPU.

The program and data prepared by the user are transferred into memory by

means of an input device such as a keyboard. An output device, such as an LCD (liq-

uid crystal display), displays the results of the computations and presents them to the

user. A digital computer can accommodate many different input and output devices,

such as DVD drives, USB flash drives, scanners, and printers. These devices use digi-

tal logic circuits, but often include analog electronic circuits, optical sensors, LCDs,

and electromechanical components.

The control unit in the CPU retrieves the instructions, one by one, from the

program stored in the memory. For each instruction, the control unit manipulates the

datapath to execute the operation specified by the instruction. Both program and

data are stored in memory. A digital computer can perform arithmetic computations,

manipulate strings of alphabetic characters, and be programmed to make decisions

based on internal and external conditions.

Memory

Control
Unit Datapath

Input/Output

CPU

 FIGURE 1-2
Block Diagram of a Digital Computer

1-1 / Information Representation 23

Beyond the Computer

In terms of world impact, computers, such as the PC, are not the end of the story.

Smaller, often less powerful, single-chip computers called microcomputers or micro-
controllers, or special-purpose computers called digital signal processors (DSPs)

 actually are more prevalent in our lives. These computers are parts of everyday prod-

ucts and their presence is often not apparent. As a consequence of being integral

parts of other products and often enclosed within them, they are called embedded
systems. A generic block diagram of an embedded system is shown in Figure 1-3.

Central to the system is the microcomputer (or its equivalent). It has many of the

characteristics of the PC, but differs in the sense that its software programs are often

permanently stored to provide only the functions required for the product. This soft-

ware, which is critical to the operation of the product, is an integral part of the em-

bedded system and referred to as embedded software. Also, the human interface of

the microcomputer can be very limited or nonexistent. The larger information-

storage components such as a hard drive and compact disk or DVD drive frequently

are not present. The microcomputer contains some memory; if additional memory is

needed, it can be added externally.

With the exception of the external memory, the hardware connected to the

embedded microcomputer in Figure 1-3 interfaces with the product and/or the out-

side world. The input devices transform inputs from the product or outside world

into electrical signals, and the output devices transform electrical signals into out-

puts to the product or outside world. The input and output devices are of two types,

those which use analog signals and those which use digital signals. Examples of digi-

tal input devices include a limit switch which is closed or open depending on whether

a force is applied to it and a keypad having ten decimal integer buttons. Examples of

Microcomputer,
Microcontroller,
or Digital Signal

Processor

A-to-D
Converters

D-to-A
Converters

Analog
Input Devices

and Signal
Conditioning

Digital
Input Devices

and Signal
Conditioning

External
Memory

Signal
Conditioning
and Digital

Output Devices

Signal
Conditioning
and Digital

Output Devices

 FIGURE 1-3
Block Diagram of an Embedded System

24 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

analog input devices include a thermistor which changes its electrical resistance in

response to the temperature and a crystal which produces a charge (and a corre-

sponding voltage) in response to the pressure applied. Typically, electrical or elec-

tronic circuitry is required to “condition” the signal so that it can be read by the

embedded system. Examples of digital output devices include relays (switches that

are opened or closed by applied voltages), a stepper motor that responds to applied

voltage pulses, or an LED digital display. Examples of analog output devices include

a loudspeaker and a panel meter with a dial. The dial position is controlled by the

interaction of the magnetic fields of a permanent magnet and an electromagnet

driven by the voltage applied to the meter.

Next, we illustrate embedded systems by considering a temperature measure-

ment performed by using a wireless weather station. In addition, this example also

illustrates analog and digital signals, including conversion between the signal types.

EXAMPLE 1-1 Temperature Measurement and Display

A wireless weather station measures a number of weather parameters at an outdoor

site and transmits them for display to an indoor base station. Its operation can be

 illustrated by considering the temperature measurement illustrated in Figure 1-4

with reference to the block diagram in Figure 1-3. Two embedded microprocessors

are used, one in the outdoor site and the other in the indoor base station.

The temperature at the outdoor site ranges continuously from -40°F to

+115°F. Temperature values over one 24-hour period are plotted as a function of

time in Figure 1-4(a). This temperature is measured by a sensor consisting of a therm-

istor (a resistance that varies with temperature) with a fixed current applied by an

electronic circuit. This sensor provides an analog voltage that is proportional to the

temperature. Using signal conditioning, this voltage is changed to a continuous volt-

age ranging between 0 and 15 volts, as shown in Figure 1-4(b).

The analog voltage is sampled at a rate of once per hour (a very slow sampling

rate used just for illustration), as shown by the dots in Figure 1-4(b). Each value sam-

pled is applied to an analog-to-digital (A/D) converter, as in Figure 1-3, which replaces

the value with a digital number written in binary and having decimal values between

0 and 15, as shown in Figure 1-4(c). A binary number can be interpreted in decimal

by multiplying the bits from left to right times the respective weights, 8, 4, 2, and 1,

and adding the resulting values. For example, 0101 can be interpreted as

0 * 8 + 1 * 4 + 0 * 2 + 1 * 1 = 5. In the process of conversion, the value of the

temperature is quantized from an infinite number of values to just 16 values.

Examining the correspondence between the temperature in Figure 1-4(a) and the volt-

age in Figure 1-4(b), we find that the typical digital value of temperature represents an

actual temperature range up to 5 degrees above or below the digital value. For exam-

ple, the analog temperature range between -25 and -15 degrees is represented by the

digital temperature value of -20 degrees. This discrepancy between the actual tem-

perature and the digital temperature is called the quantization error. In order to obtain

greater precision, we would need to increase the number of bits beyond four in the

output of the A/D converter. The hardware components for sensing, signal condition-

ing, and A/D conversion are shown in the upper left corner of Figure 1-3.

1-1 / Information Representation 25

00
11
00

11
00

11

Sampling point

01
00 01

0101
10 01

11

01
10

01
00 01

01

01
00

00
11

00
11

Temperature (degrees F)

0

40

Voltage (Volts)

(a) Analog temperature

(b) Continuous (analog) voltage

(c) Digital voltage

(d) Discrete (digital) voltage

Digital numbers (binary)

Voltage (volts)

Time (hours)

(e) Continuous (analog) voltage

Voltage (volts)

Sensor and
Signal Conditioning

Analog-to-Digital
(A/D) Conversion

Digital-to-Analog
(D/A) Conversion

Signal Conditioning

00
11
00

11 01
00

01
00

�40

80

120

4

8

0

12

16

20 40 60
0 80

100
120

�20
�40

20 40 60
0 80

100
120

�20
�40

20 40 60
0 80

100
120

�20
�40

20 40 60
0 80

100
120

�20
�40

20 40 60
0 80

100
120

�20
�40

Output

(f) Continuous (analog) readout

Temp Temp

01
11

01
11

01
11

01
11

00
11

00
11 01

01

0 4 2016128 24

0 4 2016128 24

4

8

0

12

16

4

8

0

12

16

4

8

0

12

16

0 4 2016128 24

0 4 2016128 24

0 4 2016128 24

Time (hours)

Time (hours)

Time (Hours)

Time (hours)

Temp Temp Temp

 FIGURE 1-4
Temperature Measurement and Display

26 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

Next, the digital value passes through the microcomputer to a wireless trans-

mitter as a digital output device in the lower right corner of Figure 1-3. The digital

value is transmitted to a wireless receiver, which is a digital input device in the base

station. The digital value enters the microcomputer at the base station, where calcu-

lations may be performed to adjust its value based on thermistor properties. The

resulting value is to be displayed with an analog meter shown in Figure 1-4(f) as the

output device. In order to support this display, the digital value is converted to an

analog value by a digital-to-analog converter, giving the quantized, discrete voltage

levels shown in Figure 1-4(d). Signal conditioning, such as processing of the output

by a low-pass analog filter, is applied to give the continuous signal in Figure 1-4(e).

This signal is applied to the analog voltage display, which has been labeled with the

corresponding temperature values shown for five selected points over the 24-hour

period in Figure 1-4(f). ■

You might ask: “How many embedded systems are there in my current living

environment?” Do you have a cell phone? An iPod™? An Xbox™? A digital cam-

era? A microwave oven? An automobile? All of these are embedded systems. In

fact, a late-model automobile can contain more than 50 microcontrollers, each con-

trolling a distinct embedded system, such as the engine control unit (ECU), auto-

matic braking system (ABS), and stability control unit (SCU). Further, a significant

proportion of these embedded systems communicate with each other through a

CAN (controller area network). A more recently developed automotive network,

called FlexRay, provides high-speed, reliable communication for safety-critical tasks

such as braking-by-wire and steering-by-wire, eliminating primary dependence on

mechanical and hydraulic linkages and enhancing the potential for additional safety

features such as collision avoidance. Table 1-1 lists examples of embedded systems

classified by application area.

Considering the widespread use of personal computers and embedded sys-

tems, digital systems have a major impact on our lives, an impact that is not often

fully appreciated. Digital systems play central roles in our medical diagnosis and

treatment, in our educational institutions and workplaces, in moving from place to

place, in our homes, in interacting with others, and in just having fun! The complexity

of many of these systems requires considerable care at many levels of design abstrac-

tion to make the systems work. Thanks to the invention of the transistor and the

integrated circuit and to the ingenuity and perseverance of millions of engineers and

programmers, they indeed work and usually work well. In the remainder of this text,

we take you on a journey that reveals how digital systems work and provide a

detailed look at how to design digital systems and computers.

More on the Generic Computer

At this point, we will briefly discuss the generic computer and relate its various parts

to the block diagram in Figure 1-2. At the lower left of the diagram at the beginning

of this chapter is the heart of the computer, an integrated circuit called the processor.

Modern processors such as this one are quite complex and consist of tens to hun-

dreds of millions of transistors. The processor contains four functional modules: the

CPU, the FPU, the MMU, and the internal cache.

1-1 / Information Representation 27

We have already discussed the CPU. The FPU (floating-point unit) is some-

what like the CPU, except that its datapath and control unit are specifically designed

to perform floating-point operations. In essence, these operations process informa-

tion represented in the form of scientific notation (e.g., 1.234 * 107), permitting the

generic computer to handle very large and very small numbers. The CPU and the

FPU, in relation to Figure 1-2, each contain a datapath and a control unit.

The MMU is the memory management unit. The MMU plus the internal cache

and the separate blocks near the bottom of the computer labeled “External Cache”

and “RAM” (random-access memory) are all part of the memory in Figure 1-2. The

two caches are special kinds of memory that allow the CPU and FPU to get at the

data to be processed much faster than with RAM alone. RAM is what is most com-

monly referred to as memory. As its main function, the MMU causes the memory

that appears to be available to the CPU to be much, much larger than the actual size

of the RAM. This is accomplished by data transfers between the RAM and the hard

drive shown at the top of the drawing of the generic computer. So the hard drive,

which we discuss later as an input/output device, conceptually appears as a part of

both the memory and input/output.

The connection paths shown between the processor, memory, and external

cache are the pathways between integrated circuits. These are typically implemented

 TABLE 1-1
Embedded System Examples

Application Area Product

Banking, commerce and

manufacturing

Copiers, FAX machines, UPC scanners, vending

machines, automatic teller machines, automated

warehouses, industrial robots, 3D printers

Communication Wireless access points, network routers, satellites

Games and toys Video games, handheld games, talking stuffed toys

Home appliances Digital alarm clocks, conventional and microwave

ovens, dishwashers

Media CD players, DVD players, flat panel TVs, digital

cameras, digital video cameras

Medical equipment Pacemakers, incubators, magnetic resonance

imaging

Personal Digital watches, MP3 players, smart phones,

wearable fitness trackers

Transportation and navigation Electronic engine controls, traffic light controllers,

aircraft flight controls, global positioning systems

28 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

as fine copper conductors on a printed circuit board. The connection paths below the

bus interface are referred to as the processor bus. The connections above the bus

interface are the input/output (I/O) bus. The processor bus and the I/O bus attached

to the bus interface carry data having different numbers of bits and have different

ways of controlling the movement of data. They may also operate at different speeds.

The bus interface hardware handles these differences so that data can be communi-

cated between the two buses.

All of the remaining structures in the generic computer are considered part

of I/O in Figure 1-2. In terms of sheer physical volume, these structures dominate.

In order to enter information into the computer, a keyboard is provided. In order

to view output in the form of text or graphics, a graphics adapter card and LCD

(liquid crystal display) screen are provided. The hard drive, discussed previously, is

an electromechanical magnetic storage device. It stores large quantities of infor-

mation in the form of magnetic flux on spinning disks coated with magnetic mate-

rials. In order to control the hard drive and transfer information to and from it, a

drive controller is used. The keyboard, graphics adapter card, and drive controller

card are all attached to the I/O bus. This allows these devices to communicate

through the bus interface with the CPU and other circuitry connected to the pro-

cessor buses.

1-2 ABSTRACTION LAYERS IN COMPUTER SYSTEMS DESIGN

As described by Moggridge, design is the process of understanding all the relevant

constraints for a problem and arriving at a solution that balances those constraints.

In computer systems, typical constraints include functionality, speed, cost, power,

area, and reliability. At the time that this text is being written in 2014, leading edge

integrated circuits have billions of transistors—designing such a circuit one transistor

at a time is impractical. To manage that complexity, computer systems design is

 typically performed in a “top down” approach, where the system is specified at a high

level and then the design is decomposed into successively smaller blocks until a

block is simple enough that it can be implemented. These blocks are then connected

together to make the full system. The generic computer described in the previous

section is a good example of blocks connected together to make a full system. This

book begins with smaller blocks and then moves toward putting them together into

larger, more complex blocks.

A fundamental aspect of the computer systems design process is the concept of

“layers of abstraction.” Computer systems such as the generic computer can be

viewed at several layers of abstraction from circuits to algorithms, with each higher

layer of abstraction hiding the details and complexity of the layer below. Abstraction

removes unnecessary implementation details about a component in the system so

that a designer can focus on the aspects of the component that matter for the prob-

lem being solved. For example, when we write a computer program to add two vari-

ables and store the result in a third variable, we focus on the programming language

constructs used to declare the variables and describe the addition operation. But

when the program executes, what really happens is that electrical charge is moved

around by transistors and stored in capacitive layers to represent the bits of data and

1-2 / Abstraction Layers in Computer Systems Design 29

control signals necessary to perform the addition and store the result. It would be

difficult to write programs if we had to directly describe the flow of electricity for

individual bits. Instead, the details of controlling them are managed by several layers

of abstractions that transform the program into a series of more detailed representa-

tions that eventually control the flow of electrical charges that implement the

computation.

Figure 1-5 shows the typical layers of abstraction in contemporary computing

systems. At the top of the abstraction layers, algorithms describe a series of steps that

lead to a solution. These algorithms are then implemented as a program in a high-

level programming language such as C++, Python, or Java. When the program is run-

ning, it shares computing resources with other programs under the control of an

operating system. Both the operating system and the program are composed of

sequences of instructions that are particular to the processor running them; the set of

instructions and the registers (internal data memory) available to the programmer

are known as the instruction set architecture. The processor hardware is a particular

implementation of the instruction set architecture, referred to as the microarchitec-

ture; manufacturers very often make several different microarchitectures that exe-

cute the same instruction set. A microarchitecture can be described as underlying

sequences of transfers of data between registers. These register transfers can be

decomposed into logic operations on sets of bits performed by logic gates, which are

electronic circuits implemented with transistors or other physical devices that con-

trol the flow of electrons.

An important feature of abstraction is that lower layers of abstraction can usu-

ally be modified without changing the layers above them. For example, a program

written in C++ can be compiled on any computer system with a C++ compiler and

then executed. As another example, an executable program for the Intel™ x86

instruction set architecture can run on any microarchitecture (implementation) of

that architecture, whether that implementation is from Intel™ or AMD. Consequently,

abstraction allows us to continue to use solutions at higher layers of abstraction even

when the underlying implementations have changed.

This book is mainly concerned with the layers of abstraction from logic gates

up to operating systems, focusing on the design of the hardware up to the interface

between the hardware and the software. By understanding the interactions of the

Algorithms
Programming Languages

Operating Systems
Instruction Set Architecture

Microarchitecture
Register Transfers

Logic Gates
Transistor Circuits

 FIGURE 1-5
Typical Layers of Abstraction in Modern Computer Systems

30 CHAPTER 1 / DIGITAL SYSTEMS AND INFORMATION

layers of abstraction, we can choose the proper layer of abstraction on which to con-

centrate for a given design, ignoring unnecessary details and optimizing the aspects

of the system that are likely to have the most impact on achieving the proper balance

of constraints for a successful design. Oftentimes, the higher layers of abstraction

have the potential for much more improvement in the design than can be found at

the lower layers. For example, it might be possible to re-design a hardware circuit for

multiplying two numbers so that it runs 20–50% faster than the original, but it might

be possible to have much bigger impact on the speed of the overall circuit if the algo-

rithm is modified to not use multiplication at all. As technology has progressed and

computer systems have become more complex, the design effort has shifted to higher

layers of abstraction and, at the lower layers, much of the design process has been

automated. Effectively using the automated processes requires an understanding of

the fundamentals of design at those layers of abstraction.

An Overview of the Digital Design Process

The design of a digital computer system starts from the specification of the problem

and culminates in representation of the system that can be implemented. The design

process typically involves repeatedly transforming a representation of the system at

one layer of abstraction to a representation at the next lower level of abstraction, for

example, transforming register transfers into logic gates, which are in turn trans-

formed into transistor circuits.

While the particular details of the design process depend upon the layer of

abstraction, the procedure generally involves specifying the behavior of the system,

generating an optimized solution, and then verifying that the solution meets the spec-

ification both in terms of functionality and in terms of design constraints such as speed

and cost. As a concrete example of the procedure, the following steps are the design

procedure for combinational digital circuits that Chapters 2 and 3 will introduce:

1. Specification: Write a specification for the behavior of the circuit, if one is not

already available.

2. Formulation: Derive the truth table or initial Boolean equations that define

the required logical relationships between inputs and outputs.

3. Optimization: Apply two-level and multiple-level optimization to minimize

the number of logic gates required. Draw a logic diagram or provide a netlist

for the resulting circuit using logic gates.

4. Technology Mapping: Transform the logic diagram or netlist to a new diagram

or netlist using the available implementation technology.

5. Verification: Verify the correctness of the final design.

For digital circuits, the specification can take a variety of forms, such as text or a

description in a hardware description language (HDL), and should include the respec-

tive symbols or names for the inputs and outputs. Formulation converts the specifica-

tion into forms that can be optimized. These forms are typically truth tables or Boolean

expressions. It is important that verbal specifications be interpreted correctly when

formulating truth tables or expressions. Often the specifications are incomplete, and

any wrong interpretation may result in an incorrect truth table or expression.

